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Abstract

In this paper, a viscous fluid flowing past a rotating isothermal cylinder with heat transfer is studied and simulated numerically by the
lattice Boltzmann method (LBM). A numerical strategy for dealing with curved and moving boundaries of second-order accuracy for
both velocity and temperature fields is proposed and presented. The numerical strategy and method are validated by comparing the pres-
ent numerical results of flow without heat transfer with those of available previous theoretical, experimental and numerical studies, show-
ing good agreements. On this basis, the convective heat transfer performance in such rotational boundary environments is further studied
and validated; the numerical results are reported in the first time. The effects of the peripheral-to-translating-speed ratio, Reynolds num-
ber and Prandtl number on flow and heat transfer are discussed in details.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Fluid flow around a rotating isothermal cylinder (or
between two rotating cylinders) is a common occurrence
in a variety of industrial processes. The operations can
range from the contact cylinder dryers in the chemical pro-
cess, food-processing, paper making and the textile indus-
tries to the cylindrical cooling devices in the glass and
plastics industries. Although the configurations are nor-
mally rather simple, the flow past the rotating cylinder
and the heat transfer performance between the fluid and
the cylinder are very complex. Following factors involved
in the flow, such as the features of viscous wakes including
dissipation, diffusion and cancellation of the vortices, the
effects of cylinder rotation on the production of lift force
and moment, the local heat transfer performance around
the cylindrical surface, and the evolution of surrounding
temperature field with time, have greatly increased the dif-
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ficulties to build up mathematical formulations and to sim-
ulate properly of such complex transport phenomena.

Over the past few decades, numerous theoretical, exper-
imental and numerical efforts have been made to study
isothermal flow fields past a rotating cylinder [1–7] or
non-isothermal cross-flows over a fixed cylinder [8–12].
Unfortunately, the studies, especially the numerical simula-
tions, on non-isothermal fluid flows past a rotating circular
cylinder are still quite limited in spite of considerable tech-
nological interests. Early experimental studies on such flows
were conducted by Peller et al. [13–15]. In their experiments,
convective heat transfer from rotating and heated circular
cylinders in cross flow and also the topological structure
of boundary layers along the cylinder surface were mea-
sured at sub-critical free stream Reynolds number. The
experiment performed by Özerdem [16] measured average
convective heat transfer coefficients from a horizontal cyl-
inder rotating in a quiescent air. Based on the experimental
results, a correlation in terms of average Nusselt number
and rotating Reynolds number has been established. How-
ever, it should be pointed out that, the overall or average
Nusselt numbers determined by the above experiments
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are only for a certain range of Reynolds number, it is still
difficult to estimate instantaneously of the heat transfer
contribution in each region of the rotating cylinder.

Kendoush [17] presented an approximate analytical
model for calculating convective heat transfer over the sur-
face of a rotating isothermal circular cylinder and an ana-
lytical correlation in which average Nusselt number is
represented as a function of Reynolds and Prandtl num-
bers. However, the study did not consider the effect of
cross-flow on heat transfer; the correlation is only valid
for the heat transfer of a pure rotation of the cylinder. In
general, the works of numerical modelling of convective
heat transfer of rotating cylinders have not been well
reported. A noted work [18] on this is of a numerical sim-
ulation based on the finite volume method (FVM) of con-
vection around a heated rotating cylinder. In this
modelling, the forced convection was purely caused by cyl-
inder rotation; the effect of cross flow on heat transfer was
not considered. In fact, the cylindrical coordinate used in
this modelling has an inevitable weakness in treating
boundaries as the outer boundary of the flow domain is a
type of rectangle but not a circle with the same centre of
the inner boundary. Therefore, it is necessary to carry
out a further numerical study on convective heat transfer
problems with cross-flow of rotating cylinders and mean-
while to overcome the above limitation of using FVM.

In the present study, a numerical approach to the per-
formance of convective heat transfer across a heated rotat-
ing cylinder is achieved by applying the lattice Boltzmann
method (LBM). Unlike conventional CFD simulations
which are mainly based on direct numerical approxima-
tions to the macroscopic Navier–Stokes (N–S) and energy
equations, the basic ideas of the LBM is to construct sim-
plified kinetic models that incorporate the essential physics
of microscopic or mesoscopic processes so that the macro-
scopic averaged properties can obey the desired macro-
scopic equations. The LBM has many computational
advantages. To be different from macroscopic CFD meth-
ods which solve the N–S equations involving nonlinear
convection terms, a LBM approach is based on solutions
of lattice Boltzmann equations in which the advection
operator is linear in the phase space. In addition, in macro-
scopic CFD methods, the pressure field is typically
obtained by solving the Poisson or Poisson-like equations
derived from incompressible N–S equations; this is nor-
mally of time consuming; whereas the pressure distribu-
tions can be obtained conveniently in the LBM by
solving an extremely simple equation of state. Moreover,
the inherent spatial locality of the updating rules makes
the LBM to be more ideal for parallel computing. The
other advantage of the LBM is that no-slip LBM boundary
conditions cost little computational time. This makes the
LBM to be very useful for simulating flow with compli-
cated boundaries where efficient scheme for handling
wall-fluid interaction is essential [19].

The existing LBM models for thermal fluid flow can basi-
cally be divided into two distinct categories. One is con-
cerned with multi-speed models [20–22] which can
particularly deal with density distribution function and
introduce additional discrete velocities to obtain macro-
scopic energy equations and equilibrium distributions which
usually include higher order velocity terms. The other cate-
gory is concerned with multi-distribution function models
[23–28], in which in addition to the original distribution func-
tion of density, a distribution function of temperature is also
introduced. This type of models can overcome the limitation
of multi-speed models and improve numerical instability
[24]. Therefore, in the present study, a type of multi-distribu-
tion function model is integrated in the numerical scheme.

For the flow around a rotating circular cylinder, it is
inevitable to deal with the velocity and temperature on
curved boundaries. In the present LBM approach, an
extrapolation method based on [29] is developed to handle
the boundaries of temperature field. The method combined
with the treatment of velocity boundary presented in [30]
can indeed achieve second-order accuracy for both velocity
and temperature on the curved wall. The present study will
focus on the effects of peripheral-to-translating-speed ratio,
Reynolds number and Prandtl number on the evolution of
velocity and temperature fields around the cylinder and
also the local and averaged heat transfer properties on
the cylinder surface.
2. The LBM model

A two-dimensional nine-velocity (D2Q9) LBM model
with multiple distribution functions is employed to simu-
late incompressible viscous thermal flows. A distribution
function of temperature is used to calculate temperature
field. While the macroscopic velocity and density fields
are obtained by solving the distribution function of density.
2.1. Lattice Boltzmann equation of velocity field

The lattice Boltzmann equation of velocity field can be
discretised in space x and time t into the following form:

faðxþ eadt; t þ dtÞ � faðx; tÞ

¼ � 1

sm
½faðx; tÞ � f ðeqÞ

a ðx; tÞ�; ð1Þ

where eaða ¼ 0; 1; . . . ; 8Þ is the particle velocity vector in
the ath direction in the discrete velocity set of two-dimen-
sional nine-velocity (D2Q9) model, as shown in Fig. 1;
faðx; tÞ is a distribution function of density of the ath direc-
tion; f ðeqÞ

a ðx; tÞ is its corresponding equilibrium state, sm is
the dimensionless relaxation time of velocity field; and dt
is the time step.

The equilibrium distribution function f ðeqÞ
a ðx; tÞ in Eq.

(1) is expressed as

f ðeqÞ
a ðx; tÞ ¼ xaq 1þ 3

c2
ðea � uÞ þ

9

2c2
ðea � uÞ2 �

3

2c2
u2

� �
;

ð2Þ
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Fig. 1. Discrete velocity set of two-dimensional nine-velocity (D2Q9)
model.
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where u and q are the macroscopic velocity and density,
respectively; the streaming speed, c, is defined as
c � dx=dt; where dx is the streaming length; xa is the
weighting coefficient. In the D2Q9 model

ea ¼
0; a¼ 0;

ðcos½ða� 1Þp=4�; sin½ða� 1Þp=4�Þc; a¼ 1;3;5;7;ffiffiffi
2
p
ðcos½ða� 1Þp=4�; sin½ða� 1Þp=4�Þc; a¼ 2;4;6;8;

8><
>:

ð3Þ

xa ¼
4=9; a¼ 0;

1=9; a¼ 1;3;5;7;

1=36; a¼ 2;4;6;8:

8><
>: ð4Þ

The sound speed in the model is represented as cs ¼ c=
ffiffiffi
3
p

.
The macroscopic quantities u and q are evaluated, respec-
tively, as

q ¼
X

a

fa and qu ¼
X

a

eafa: ð5Þ

According to the limit of incompressible flow,
Ma ¼ juj=cs � 1 and the Chapman–Enskog expansion,
the mass and momentum equations can be derived from
the D2Q9 model as [31]

r � u ¼ 0; ð6Þ
ou

ot
þ ðu � rÞu ¼ � 1

q
rp þ mr2u; ð7Þ

where the pressure p satisfies the equation of state as
p ¼ qc2

s ; the kinematical viscosity m is determined by
m ¼ ðsm � 0:5Þ=c2

s dt.

2.2. Lattice Boltzmann equation of temperature field

It is well accepted that the compression work carried out
by pressure and viscous heat dissipation can be neglected in
incompressible flow. On this basis, the lattice Boltzmann
equation of temperature field can be given by
gaðxþ eadt; t þ dtÞ � gaðx; tÞ

¼ � 1

sc
½gaðx; tÞ � gðeqÞ

a ðx; tÞ�; ð8Þ

where sc is the dimensionless relaxation time; gaðx; tÞ is the
temperature distribution function in the ath direction;
gðeqÞ

a ðx; tÞ is the corresponding equilibrium distribution
function and can be expressed as [25,28]

gðeqÞ
a ðx; tÞ ¼ xaT 1þ 3

c2
ea � u

� �
; ð9Þ

where T is the fluid temperature and can be evaluated from

T ¼
X

a

ga: ð10Þ

In addition, it has been proved that the following macro-
scopic equation of temperature can be obtained from the
Chapman–Enskog analysis as [25]:

oT
ot
þr � ðuT Þ ¼ cr2T ; ð11Þ

where c is the diffusivity coefficient which is represented as
c ¼ ðsc � 0:5Þ=c2

s dt.
In the LBM approach, both Eqs. (1) and (8) can be com-

puted in two steps, namely, the collision and streaming
steps. In the collision steps

~f aðx; tÞ ¼ faðx; tÞ �
1

sm
½faðx; tÞ � f ðeqÞ

a ðx; tÞ� ð12aÞ

and

~gaðx; tÞ ¼ gaðx; tÞ �
1

sc
½gaðx; tÞ � gðeqÞ

a ðx; tÞ�: ð13aÞ

In the streaming steps

faðxþ eadt; t þ dtÞ ¼ ~f aðx; tÞ ð12bÞ

and

gaðxþ eadt; t þ dtÞ ¼ ~gaðx; tÞ; ð13bÞ

where ~f a and ~ga denote the post-collision states of the dis-
tribution function of density and distribution function of
temperature, respectively. Obviously, the collision steps
are completely local and the streaming processes take little
computational effort at each time step, at which the distri-
bution functions of a lattice are only affected by its neigh-
bouring ones. This type of inherent spatial locality of the
updating rules makes the LBM to be perfect for parallel
computation.

3. Treatment for curved boundary

Fig. 2 shows an arbitrary curved wall (the dashed line)
separating a solid region from fluid; where the black solid
circles (d) denote intersections of the boundary with vari-
ous lattice links ðxwÞ, the open circles (s) represent the
boundary nodes in the fluid region ðxf Þ, and the grey solid
circles ( ) indicate those in the solid region ðxbÞ. Obviously,
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Fig. 2. Layout of the regularly spaced lattices and curved wall boundary.
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both ~f aðxb; tÞ and ~gaðxb; tÞ are needed to perform the
streaming steps on fluid nodes xf .

The fraction of an intersected link in the fluid region, D,
is defined as

D ¼ jxf � xwj
jxf � xbj

: ð14Þ

It is well known that a bounce-back boundary condition
satisfies no-slip velocity boundary condition with a sec-
ond-order accuracy if D ¼ 1=2, so that a thermal boundary
condition should be able to be implemented in a similar
way to achieve the second-order accuracy. Certainly, this
type of method can be used to treat simple boundaries of
straight lines which are in parallel with the lattice grid.
However, for a curved boundary, simply placing the
boundary at D ¼ 1=2 will factitiously change the geometry
of the boundary and degrade the accuracy of the velocity
and temperature fields. In the present study, a new method
is proposed and introduced to deal with both velocity and
temperature boundaries with second-order accuracy. For
treating velocity field with curved boundaries, the method
is based on the method reported in [30]; while for handling
temperature fields with the curved boundaries, an extrapo-
lation method of second-order accuracy is newly developed
in the present study.

3.1. No-slip velocity boundary condition

Substantial evidence has shown that the bounce-back
boundary conditions combined with interpolations includ-
ing a one-half grid spacing correction at the boundaries are
in fact of the second-order accuracy and thus capable of
handling curved boundaries [30,31].

To construct the post-collision distribution function
~f �aðxb; tÞ based upon the known information in the sur-
roundings, a Chapman–Enskog expansion for the post-col-
lision distribution function on the right-hand side of Eq.
(12b) is conducted as

~f �aðxb; tÞ ¼ ð1� vÞ~f aðxf ; tÞ þ vf �a ðxb; tÞ þ 2xaq
3

c2
e�a � uw;

ð15Þ
where

f �a ðxb; tÞ ¼ f ðeqÞ
a ðxf ; tÞþxaqðxf ; tÞ

3

c2
ea � ðubf � uf Þ; ð16Þ

ubf ¼ uff ¼ uðxff ; tÞ; v¼ ð2D� 1Þ
ðs� 2Þ ; if 06D<

1

2
; ð17aÞ

ubf ¼
1

2D
ð2D� 3Þuf þ

3

2D
uw; v¼ ð2D� 1Þ

ðs� 1=2Þ ; if
1

2
6D< 1:

ð17bÞ

In the above, e�a � �ea; xff ¼ xf þ e�adt; uf � uðxf ; tÞ is the
fluid velocity near the wall; uw � uðxw; tÞ is the velocity of
solid wall; ubf is the imaginary velocity for interpolations;
and v is the weight factor that depends on D. Substituting
Eq. (16) into Eq. (15), gives

~f �aðxb; tÞ ¼ ~f aðxf ; tÞ � v½~f aðxf ; tÞ � f ðeqÞ
a ðxf ; tÞ�

þ xaqðxf ; tÞ
3

c2
ea � ½vðubf � uf Þ � 2uw�: ð18Þ

It has been proved that a no-slip boundary condition of
second-order accuracy can be achieved by this method [30].

3.2. Temperature boundary condition

To implement the curved boundary treatment for tem-
perature, the nonequilibrium parts of temperature distribu-
tion function is introduced and defined as

gðneqÞ
a ðx; tÞ ¼ gaðx; tÞ � gðeqÞ

a ðx; tÞ: ð19Þ

Substituting Eq. (19) into Eq. (13a) leads to

~gaðx; tÞ ¼ gðeqÞ
a ðx; tÞ þ ð1�

1

sc
ÞgðneqÞ

a ðx; tÞ: ð20Þ

Obviously, both gðeqÞ
�a ðxb; tÞ and gðneqÞ

�a ðxb; tÞ are required to
determine the value of ~g�aðxb; tÞ.

It can be seen from Eq. (9) that ub � uðxb; tÞ and
T b � T ðxb; tÞ are necessary for the evaluation of gðeqÞ

�a ðxb; tÞ.
Assuming that dx ¼ dt ¼ e, then

ub ¼ ½uw þ ðD� 1Þuf �=DþOðe2Þ; ð21aÞ
ub ¼ ½2uw þ ðD� 1Þuff �=ð1þ DÞ þOðe2Þ: ð21bÞ

Obviously, both ub1 ¼ ½uw þ ðD� 1Þuf �=D and ub2 ¼ ½2uwþ
ðD� 1Þuff �=ð1þ DÞ can be used to approximate ub with
second-order accuracy. Moreover, ub1 is usually more accu-
rate than ub2 to be used to approximate ub because xf is clo-
ser to xb than xff . However, if D is small, ub1 will be too
large and leads to the numerical instability in the simula-
tion. Therefore, D is introduced as a weight, and ub can
be approximated by

u�b ¼ ub1 if D P 0:75; ð22aÞ
u�b ¼ Dub1 þ ð1� DÞub2 if D < 0:75: ð22bÞ

In a similar way, T b can be approximated by

T �b ¼ T b1; if D P 0:75; ð23aÞ
T �b ¼ DT b1 þ ð1� DÞT b2; if D < 0:75; ð23bÞ
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where T b1 ¼ ½T w þ ðD� 1ÞT f �=D, T b2 ¼ ½2T w þ ðD� 1Þ
T ff �=ð1þ DÞ; T f and T ff denote the temperature at xf

and xff , respectively. For an arbitrary value of D, it can
be easily proved that

ub ¼ u�b þOðe2Þ ð24aÞ

and

T b ¼ T �b þOðe2Þ: ð24bÞ

By substitution of Eqs. (24a) and (24b), Eq. (9) becomes

gðeqÞ
�a ðxb; tÞ ¼ hðeqÞ

�a ðxb; tÞ þOðe2Þ; ð25Þ

where

hðeqÞ
�a ðxb; tÞ ¼ x�aT �b 1þ 3

c2
e�a � u�b

� �
: ð26Þ

The next task is to seek the second-order approximation
for gðneqÞ

�a ðxb; tÞ. Based on the Chapman–Enskog analysis,
the solution for gaðx; tÞ can be expanded in the form of

gaðx; tÞ ¼ gð0Þa ðx; tÞ þ egð1Þa ðx; tÞ þOðe2Þ: ð27Þ

where gð0Þa ðx; tÞ ¼ gðeqÞ
a ðx; tÞ is the equilibrium distribution

function of temperature.
Similarly

gaðxþ eea; tÞ ¼ gð0Þa ðxþ eea; tÞ þ egð1Þa ðxþ eea; tÞ þOðe2Þ:
ð28Þ

Eq. (27) subtracted from Eq. (28) gives

gðneqÞ
a ðxþ eea; tÞ ¼ gðneqÞ

a ðx; tÞ þ e½gð1Þa ðxþ eea; tÞ
� gð1Þa ðx; tÞ� þOðe2Þ ð29Þ

the Taylor series expansion for gð1Þa ðxþ eea; tÞ at ðx; tÞ re-
sults in

gð1Þa ðxþ eea; tÞ ¼ gð1Þa ðx; tÞ þ eea � rgð1Þa ðx; tÞ þOðe2Þ: ð30Þ

Substituting Eq. (30) into Eq. (29) gives

gðneqÞ
a ðxþ eea; tÞ ¼ gðneqÞ

a ðx; tÞ þOðe2Þ: ð31Þ

Thus

gðneqÞ
�a ðxb; tÞ ¼ gðneqÞ

�a ðxf ; tÞ þOðe2Þ: ð32Þ

By the same token, it can be proved that

gðneqÞ
�a ðxb; tÞ ¼ gðneqÞ

�a ðxff ; tÞ þOðe2Þ: ð33Þ

Therefore, the distribution function, hðneqÞ
�a ðxb; tÞ, can be

used to approximate gðneqÞ
�a ðxb; tÞ as

hðneqÞ
�a ðxb; tÞ ¼ gðneqÞ

�a ðxf ; tÞ; if D P 0:75; ð34aÞ
hðneqÞ

�a ðxb; tÞ ¼ DgðneqÞ
�a ðxf ; tÞ þ ð1� DÞgðneqÞ

�a ðxff ; tÞ;
if D < 0:75: ð34bÞ

Obviously, for an arbitrary value D,

gðneqÞ
�a ðxb; tÞ ¼ hðneqÞ

�a ðxb; tÞ þOðe2Þ: ð35Þ

Substituting Eqs. (25) and (35), Eq. (20) becomes
~g�aðxb; tÞ ¼ ~h�aðxb; tÞ þOðe2Þ; ð36Þ
where

~h�aðxb; tÞ ¼ hðeqÞ
�a ðxb; tÞ þ 1� 1

sc

� �
hðneqÞ

�a ðxb; tÞ: ð37Þ

Consequently, on temperature boundary, the second-order
accuracy can be satisfied by using ~h�aðxb; tÞ to approximate
~g�aðxb; tÞ.

3.3. Force evaluation

In the present simulation, the momentum-exchange
method by Mei et al. [30] is employed to evaluate the force
on a circular cylinder surface. In order to implement the
method efficiently, a scalar array /ði; jÞ is employed.
/ði; jÞ ¼ 0 if the lattice location ði; jÞ is occupied by fluid;
/ði; jÞ ¼ 1 is for those lattice nodes inside the solid body.
For a given boundary node xb inside the solid region, the
momentum-exchange with all possible neighbouring fluid
nodes over a time step is given byX
a6¼0

ea½~f aðxb; tÞ þ ~f �aðxb þ e�adt; tÞ�½1� /ðxb þ e�adtÞ�: ð38Þ

The total force acting on the solid wall by fluid can be ob-
tained by summing the contribution over all boundary
nodes xb belonging to the body, namely,

F ¼
X
all xb

X
a 6¼0

ea½~f aðxb; tÞ þ ~f �aðxb þ e�adt; tÞ�½1� /ðxb þ e�adtÞ�:

ð39Þ

The force F is evaluated after the collision step; the value of
~f �a at the boundary can be obtained by Eq. (18).

4. Numerical simulation

Fig. 3 shows the physical model of flow and heat trans-
fer around a rotating isothermal circular cylinder of radius
R. In a rectangular two-dimensional domain, the coordi-
nates x and y are taken, respectively, to be measured along
the horizontal and vertical directions with the origin at the
centre of the circular cylinder. At the entrance, i.e. the left
boundary, fluid with the constant temperature T l is injected
into the domain with constant uniform velocity U in x-
direction. Meanwhile, a free outflow boundary with zero
velocity and temperature gradients in x-direction is set at
the right hand side boundary of the domain. The upper
and lower boundaries which parallel to the x-axis are set
as free-slip velocity and heat insulated boundaries. The
above four boundaries of the flow field are placed far
enough from the centre of the cylinder in order to eliminate
the effect of the boundaries. In the present simulations, the
boundaries at upstream and downstream are set, respec-
tively, as 6.6 and 12.7 times of the radius away from the
centre of the cylinder; the upper and lower walls are both
set as 8.07 times of the radius away from the cylinder
centre.
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Fig. 3. Flow field set-up.
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An initial field of flow is given by uðx; yÞ ¼ U , vðx; yÞ ¼ 0
with uniform temperature T l, where u and v are, respec-
tively, the x- and y-component of u, and the cylinder is sta-
tionary with temperature T h. At the next moment, the
cylinder starts to rotate with an angular velocity X and
the surface temperature remains to be constant as T h.

The flow and heat transfer are simulated at Re = 200,
218, 500, and 1000, respectively; where the Reynolds num-
ber is defined as Re ¼ 2UR=m. In order to regard the fluid as
incompressible, the flow velocity must be much smaller
than the speed of sound. Therefore, the inflow velocity U

is set at 0.01 for Re = 200 and 218; 0.005 for Re = 500
and 1000, respectively. Parameter k is introduced to define
the rate of the peripheral velocity V ¼ XR to the inflow
velocity U, i.e. k = V/U. Prandtl number at 0.1, 0.5, 0.71
and 1.0, respectively, is applied for each combination of
k and Re; and for all cases of the simulation, T h ¼ 40,
T l ¼ 20, q ¼ 6 and R ¼ 15dx are used. Once U is deter-
mined, the kinetic viscosity m and thermal diffusivity c are
determined through Re and Pr; the peripheral velocity V

is determined by parameter k.
To compare the current results with those from avail-

able previous studies, the following normalisations are
conducted:

u� ¼ u=U ; v� ¼ v=U ; x� ¼ x=R; y� ¼ y=R;

t� ¼ Ut=R; T � ¼ T � T l

T h � T l
: ð40Þ

The drag and lift coefficients are defined as

CD ¼ D

qU 2R
; CL ¼ L

qU 2R
; ð41Þ

where drag force D and lift force L are, respectively, the
x-component and y-component of F given by Eq. (39).

The heat transfer convected from the cylindrical surface
is estimated in terms of Nusselt number. Once the temper-
ature field is determined, the following Nusselt numbers are
defined, respectively, as
local : Nu ¼ � 2R
ðT h � T lÞ

oT
on

� �
wall

; ð42aÞ

surface-averaged : hNui ¼ 1

2p

Z p

�p
Nu dh; ð42bÞ

period-averaged : Nu ¼ 1

tp

Z
tp

Nu dt; ð42cÞ

and period-and-surface-averaged : hNui ¼ 1

tp

Z
tp

hNuidt;

ð42dÞ

where n is the outer-normal vector of cylindrical wall; angle
h equals zero at the rearmost point of the cylinder and in-
creases in anticlockwise. The period-averaged quantities
can only be calculated after the flow reaches the periodic
state when the frequency of flow evolution, f, is obtained
by a Fourier frequency analysis of the periodical variation
of v at point (9R,0); and then the period is given by
tp ¼ 1=f . Accordingly, the dimensionless frequency is de-
fined by the following Strouhal number:

St ¼ Rf =U : ð43Þ
5. Results and discussion

5.1. Velocity fields and the force acting on the cylinder

Velocity fields and the force acting on the cylinder are
computed by the LBM and compared with the data avail-
able in literatures.

Fig. 4 shows the evolution of wake flow pattern at
Re = 200, k = 0.5 for t* from 1.0 to 13.0. The left column
of the figure shows streamlines obtained by the present
LBM and the right column shows experimental visualiza-
tion pictures of Coutanceau and Menard [1]. The compar-
ison between the LBM results and those from the
experiment shows excellent agreement in terms of the for-
mation of a Karman vortex street. Shu et al. have success-



Fig. 4. Comparison between the evolution of the velocity field obtained by present computation and those by the experiment of Coutanceau and Menard
[1] for Re = 200, k = 0.5 (left: obtained by present computation; right: obtained by experiment).
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fully conducted a LBM simulation on the same problem of
flow using the Taylor series expansion and least square
method [7]. Fig. 5 shows a comparison of vorticity con-
tours obtained by the present simulation and those
reported by Shu et al. in [7]. Contour lines with positive
(including zero) and negative vorticity values are shown



Fig. 4 (continued)
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by solid and dashed lines, respectively. The comparison
shows that the vorticity contours obtained by two different
methods are quite consistent.

As a further check on consistency of the experimental
and present numerical results, evolutions with time of u*

and v* on positive x-axis are compared with the experimen-
tal results of Coutanceau and Menard [1]. Some represen-
tative points taken from the experimental study [1] are
Fig. 5. Evolution of vorticity contours for Re = 200, k = 1.0. Contour lines wit
and dashed lines, respectively. (left: obtained by present computation; right: o
shown in Fig. 6 to illustrate the degree of the quantitative
comparison.

The results of flow at Re = 200, k = 1.0 are presented in
Figs. 7 and 8. In Fig. 7, the evolution of the velocity field
obtained by the present calculation are shown and com-
pared with those by Badr and Dennis [2] using the finite
difference method (FDM). It is obvious that both calcula-
tions show similar streamlines except at t* = 6.0 when, as
h positive (including zero) and negative vorticity values are shown by solid
btained by Shu et al. [7] through TLLBM).



Fig. 6. Time development of velocity profiles on x-axis for Re = 200, k = 0.5.
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shown in Fig. 7d, the two vortices, which can be identified
cleanly in the current LBM simulation, do not appear in
the corresponding plot by the FDM. To justify which result
is more accurate, the two numerical results at t* = 6.0 are
compared with the corresponding experimental result of
Coutanceau and Menard [1] and shown in Fig. 8. It is clear
that two vortices identified by the present LBM simulation
are also observed by the experiment.

At Re = 500, the force acting on the rotating cylinder
for k = 0.1, 0.5 and 1.0, respectively, is examined by the
LBM. Numerical results of the variation of lift coefficient
CL with time for different k is shown in Fig. 9a; obviously,
the CL increases with t* but decreases with k. In the same
Figure, the numerical results are compared with the
approximate analytical solution of Badr and Dennis [2].
The comparison indicates that the approximate analytical
solution is suitable only in an early stage of flow evolution.
The lift coefficients for k = 0.5 and 1.0 are also compared
with the numerical results of Takada and Tsutahara [3],
in which the evolution of isothermal flow around a sud-
denly rotating circular cylinder is simulated by two-dimen-
sional seven-velocity (D2Q7) LBM model; the comparisons
are presented in Fig. 9b. The lift coefficients obtained by
the latter oscillate with large amplitude, especially at the
early stage of the flow evolution. This kind of unphysical
oscillation may be caused by the insufficient accuracy of
the boundary definition. Since the boundary defined for
the cylinder in [3] is not located on a pure circle but on a
polygon, the cylinder must occupy much more lattice units
to make the polygon to approach a circle. In fact, this kind
of treatment has factitiously changed the real geometry of
the boundary and therefore led to a reduction in the com-
putational accuracy. The comparison in Fig. 9b shows that
the present method for dealing with curved boundary can
overcome the limitation mentioned above so that it is more
accurate.
5.2. Temperature field

To evaluate the consistency of heat transfer between the
present numerical prediction and according experimental
measurement, the distribution of period-averaged Nusselt
number on the surface of a stationary cylinder at
Re = 218, Pr = 0.71 is calculated and compared with the
experiments of Eckert and Soehngen [32]. As shown in
Fig. 10, the distribution obtained by the present simulation
agrees well with the experiment.

The current results are also validated by comparing with
available numerical data for fixed or stationary cylinder,
namely k = 0, such as the data by Momose and Kimoto
[33] using the FDM. The comparison as shown in Fig. 11
indicates good agreement.

For heat transfer regarding flows across a rotating cylin-
der, due to the shortage of available experimental and
numerical data from existing literatures, the present LBM
results are compared with those of numerical calculations
using in-house code of FVM [34] for the same problem at
Re = 200, Pr = 0.5, k = 0.5. Fig. 12 shows the comparison
of temperature distributions obtained by the two different
methods. Obviously, the two results are consistent despite
it is more inconvenient to deal with such type of rotating
boundary conditions in the FVM.

Fig. 13 shows the evolution of temperature contours and
corresponding velocity streamlines at Re = 200, k = 0.5,
Pr = 0.5. It is noted that an impulsive start of the cylinder
leads to a generation of initial thermal boundary layer near
the surface of the isothermal cylinder, and moreover, the
temperature contours almost parallel to the cylinder wall.
As time marching, the thickness of the thermal boundary
layer experiences a magnification. However, at the same
time, the cross-flow conveys more and more heat from
the front to the rear of the cylinder so that the extension
of the thermal boundary layer is deeper at the rear than



Fig. 7. Evolution of the velocity field for Re = 200, k = 1.0 (left: obtained by present computation; right: obtained by Badr and Dennis [2] through FDM).
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it is in the front. This phenomenon becomes more evident
with the time development. The warming up of the bound-
ary layer at the rear of the cylinder results in a decrease of
heat flux there. The numerical results also indicate that vor-
tex shedding plays an important role in the heat transfer
downstream. As shown in Fig. 13, with time marching,
the vortices at the rear of the cylinder grow in size and ulti-
mately detach into the wake while heat is carried away. As



Fig. 8. Streamlines for Re = 200, k = 0.5 at t* = 6.0 (top left: by LBM; lower left: by FDM; right: by experiment).

Fig. 9. The variation with time of the lift coefficient for Re = 500: (a) computed by present method; (b) computed by Takada and Tsutahara [3].

Fig. 10. Distribution of period-averaged Nusselt number on the cylinder
surface at Re = 218, Pr = 0.71, k = 0.
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a result, in the weak, high temperature concentrates in the
regions where streamlines have large curvatures.
5.3. The effects of parameter k

The effects of parameter k on flow and heat transfer are
predicted numerically. Figs. 14 and 15 show the early stage
of temperature contour evolution and corresponding veloc-
ity streamlines at k = 0 and 0.1, Re = 200, Pr = 0.5,
respectively.

In Fig. 14, the cylinder does not rotate as k = 0; two
opposed symmetrical vortices are formed simultaneously
because of the symmetry of the velocity gradient. The
upper vortex rotates clockwise, and the lower vortex
rotates anticlockwise. These two vortices grow in width
and length with time, remain as symmetrical for a certain
period of time and are stably attached to the cylinder. Dur-
ing this period, heat transfer also remains symmetry
between the upper and lower part of the cylinder. After
this, the vortices become asymmetrical and are shed alter-
nately downstream, and meanwhile, the symmetry of heat
transfer is destroyed.

When k 6¼ 0 (see Figs. 13 and 15), the velocity and
temperature fields are quite similar to those for k = 0 at
the start of cylinder rotation, but as t* increases slightly,



Fig. 11. Isothermal pattern at Re = 200, Pr = 0.71, k = 0, t* = 301.1. (a)
by LBM; (b) by FDM.

Fig. 12. Comparison of temperature distributions on x-axis obtained by
LBM and FVM at Re = 200, Pr = 0.5, k = 0.5.
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differences in the flow become obvious. The wall shear gra-
dient becomes asymmetrical because the upper side of the
cylinder moves against the free stream whereas the lower
one moves in the direction of the free stream. As a result,
the symmetry of the wall vorticity is destroyed and asym-
metrical vortices appear. Moreover, the upper vortex
appears earlier than that on the lower side. It can be iden-
tified by comparing the streamlines in Figs. 4 and 7 that the
increase of parameter k inhibits the lower vortex forma-
tion. This has been verified by experiment in which the
lower vortex becomes completely disappear when para-
meter k > 2 [1].

The other effect of parameter k on flow is to accelerate
the detachment of vortices. For k = 0 (see Fig. 14) the vor-
tices remain symmetrical and are stably attached to the cyl-
inder when t* = 0–16, whereas for k = 0.1, as shown in
Fig. 15, the first vortex is completely shed downstream at
t* = 16; while, for k = 0.5, this happens more rapidly at
t* = 6.0. Indeed, this effect is very evident at the early stage
of the flow and becomes weaker with the development of
time.

The effect of k on Strouhal number and drag and lift
coefficients is shown in Table 1. Strouhal number is calcu-
lated at Re = 200 after the flow reaches the periodic state.
The results show that the Strouhal number rises slightly
when parameter k increases from 0.1 to 1.0. The variation
of the minimum, maximum and period-averaged values of
drag and lift coefficients with k can be used to examine the
effects of k on the forces acting on the surface of cylinder.
Obviously, the period-averaged lift coefficients, CL, for
k 6¼ 0 are all less than zero since the anticlockwise rotation
of the cylinder. Moreover, the increase of k from 0.1 to 1.0
results in the decrease of period-averaged drag coefficient,
CD, and the rise of the absolute value of CL.

The variation of surface-averaged Nusselt numbers,
hNui, with time for different k are shown in Fig. 16; where
the sub-graph at top right corner gives an enlarged view of
the rectangular region enclosed by the dash-dotted lines. It
is shown that surface-averaged Nusselt number for each
case drops sharply in a short period after the flow started.
Moreover, the highly consistent hNui � t� curves indicate
that the effect of rotation (or parameter k) on surface-aver-
aged heat transfer is limited despite hNui decreases slightly
with the increase of k.

The effect of k on local heat transfer coefficient is also
predicted. The distributions of local Nusselt numbers at
Re = 200, Pr = 0.5, h 2 ½�p=2; p=2� for k = 0.0, 0.1 and
0.5 are shown in Fig. 17. It can be seen from the figure (a)
that, for k = 0, the local Nu distribution is strictly symmet-
rical with respect to h ¼ 0, and there are two local minimum
values, noted as A and B, and a local maximum value noted
as C. For convenience, the h-components of point A, B and
C are defined by h1, h2 and h3, respectively. Due to the sym-
metry nature, h1 ¼ �h2 and h3 ¼ 0 in this case, the phenom-
enon may be connected with the fact that, for k = 0, the two
vortices formed at the rear surface of the cylinder (see
Fig. 14) rotate in opposite directions, roll up more and more
heat from the upper and lower surfaces of the cylinder sym-
metrically while amplify the thickness of the thermal layers,
and consequently diminish much more temperature gradi-
ent especially at the location of h ¼ h1 and h ¼ h2. Mean-
while, it can be noted in Fig. 14 that the rotating vortices
form a narrow region along the positive x-axis, where u*

is negative. This region of reversed flow sweeps the thermal
layers of lower temperature back to the cylinder surface and
thus inhibits the reduction of temperature gradient there.
As a result, a local maximum of Nusselt number appears
at h ¼ h3 ¼ 0. However, as shown in Fig. 17b and c, the
symmetry of local Nusselt number distribution is destroyed
by the unsymmetrical motion of vortices when k 6¼ 0. For
example, for k = 0.5, the region with revised flow does
not distribute along the x-axis but rocks up and down along



Fig. 13. Evolution of velocity streamlines and temperature contours for Re = 200, k = 0.5, Pr = 0.5.
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with the migration and the alternative shedding of the vor-
tices. Thus, the point A can not be kept at the location of
h ¼ 0. Moreover, the unsymmetrical motion of vortices
results in h1 6¼ �h2. Considering that the flow can reach a
periodic state when t* is large enough, the period-averaged
values of Nusselt number distributions are calculated at
Re = 200, Pr = 0.5 for different k and shown by Fig. 18.
It can be seen clearly that the extreme values are tending
to migrate along the surface of the cylinder anticlockwise
with the increase of parameter k.



Fig. 14. Evolution of velocity streamlines and temperature contours for Re = 200, k = 0, Pr = 0.5.
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To further examine the effect of reversed flow region, the
local Nusselt number at h ¼ 0 as a function of the time t*

and parameter k is shown in Fig. 19. Based on Fig. 19,
the variation of Nu in three time intervals defined by S1,
S2 and S3, respectively, can be discussed. Within interval
S1, the vortices are either not formed or very weak, have lit-
tle effect on the heat transfer. Some differences can be iden-
tified in S2 if examining the corresponding streamline plots,
as shown in Figs. 7, 13 and 14, that the vortices appearing
in different cases grow up with the comparable speeds in



Fig. 15. Evolution of velocity streamlines and temperature contours for Re = 200, k = 0.1, Pr = 0.5.
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this time interval, while the reversed flows are distinctly
weakened with the increase of k; thus, it shows a climbing
up for k = 0, a levelling off followed by descending for
k = 0.5, and a steady decrease for k = 1.0. The develop-
ment of Nu in S3 is more variable. The enlargement of vor-
tices for k = 0 continues and predominates over the effect
of reversed flow to cause Nu a stable decrease. But, at
the same time, the vortex shedding appears in the cases



Table 1
Strouhal number and drag and lift coefficients change with k at Re = 200

k St CDmin CDmax CD CLmin CLmax CL

0.1 0.1089 1.432 1.680 1.553 �1.293 0.7746 �0.2669
0.5 0.1094 1.249 1.708 1.505 �2.365 �0.2838 �1.331
1.0 0.1100 0.9561 1.645 1.349 �3.706 �1.660 �2.699

Fig. 16. Surface-averaged Nusselt numbers changes with k and t*.

Fig. 18. Period-averaged Nusselt number along the cylinder surface at
Re = 200, Pr = 0.5.

Fig. 19. Local Nusselt number changes with time and k at h ¼ 0 for
Re = 200, Pr = 0.5.
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of k = 0.5 and 1.0 and interrupts the continuous growth of
the vortices, which induces the reversed flow and vortices
enlargement to dominate heat transfer at h ¼ 0 alterna-
tively. Thus, there are some fluctuations of the Nu values
for k = 0.5 and 1.0 within S3.

The development of surface-averaged Nusselt number
with time at Re = 200, k = 0.5, Pr = 0.5 is shown in
Fig. 20. It is indicated that the surface-averaged heat trans-
fer coefficient can reach a periodic state when t* is sufficient
large. Thus, when Re = 200, the minimum, maximum and
the period-averaged values of surface-averaged Nusselt
Fig. 17. Distributions of local Nusselt numbers for Re = 200, Pr = 0.5, h 2 ½�p=2;p=2�.



Fig. 20. Surface-averaged Nusselt number changes with time at Re = 200,
k = 0.5, Pr = 0.5.

Table 2
Surface-averaged Nusselt number changes with k at Re = 200, Pr = 0.5
and 1.0

Pr k hNuimin hNuimax hNui
0.5 0.1 6.315 6.389 6.351

0.5 6.190 6.283 6.237
1.0 6.015 6.104 6.060

1.0 0.1 8.319 8.460 8.397
0.5 8.048 8.246 8.167
1.0 7.788 7.948 7.876
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number, i.e. hNuimin, hNuimax and hNui, at Pr = 0.5 and 1.0
for different k are further calculated; the results are shown
in Table 2. The comparison of the data in Table 2 shows
that the increase in parameter k can result in an evident
decrease in hNuimin, hNuimax and hNui.

5.4. The effects of Reynolds number and Prandtl number

Table 3 shows the effect of Reynolds number on Strou-
hal number and drag and lift coefficients. It is shown that
Strouhal number and the period-averaged lift coefficient
increase with Reynolds number, but the period-averaged
drag coefficient decreases with Re. In Table 4, the mini-
mum, maximum and period-averaged values of surface-
averaged Nusselt number at different Re and Pr are given.
Table 3
Strouhal number and drag and lift coefficients change with Re for k = 0.5

Re St CDmin CDmax CD CLmin CLmax CL

200 0.1094 1.249 1.708 1.505 �2.365 �0.2838 �1.331
500 0.1216 1.073 1.794 1.501 �2.656 �0.1238 �1.392
1000 0.1316 0.9724 1.759 1.419 �2.726 �0.2286 �1.491

Table 4
Variation of surface-averaged Nusselt number with Re and Pr for k = 0.5

Re Pr hNuimin hNuimax hNui
200 0.1 3.305 3.336 3.319

0.5 6.190 6.283 6.237
1.0 8.048 8.243 8.164

500 0.1 5.134 5.284 5.206
0.5 9.726 10.42 10.11
1.0 12.57 13.70 13.22

1000 0.1 7.147 7.562 7.303
0.5 13.42 14.75 14.02
1.0 16.88 18.44 17.6
It is clear that the surface-averaged Nusselt number
increases with both Re and Pr.

6. Conclusion

A multi-distribution function LBM model for simulat-
ing viscous fluid flow past a rotating isothermal cylinder
with heat transfer is presented. The model can deal with
curved moving flow and thermal boundaries of second-
order accuracy. The numerical results, such as velocity
and temperature distributions and lift and drag coefficients,
agree well with those reported in previous studies. The
advantages of applying the LBM to such types of heat
transfer problem can be effectively identified.

The effects of peripheral-to-translating-speed ratio k on
flow and heat transfer are evaluated. Following conclu-
sions in terms of an increase of k can be summarised:

(1) The formation of lower vortices is inhibited.
(2) Vortices shedding is greatly accelerated at the early

stage of flow.
(3) The asymmetry distributions of velocity and temper-

ature are enhanced.
(4) The extreme points of period-averaged Nusselt num-

ber migrate anticlockwise along the surface of
cylinder.

(5) The period-and-surface-averaged Nusselt number is
decreased.

(6) The absolute value of the lift coefficient is increased,
but the drag coefficient is decreased.

The treatment for curved and moving boundary pre-
sented in this paper is simple and efficient. However, the
calculation for the whole computational domain is rela-
tively time consuming due to the application of uniform
gird. The computation costs about 0.36 s per time-step on
a Celeron 2.8 GHz PC machine with 1.00 GB of RAM.
To improve the efficiency of computation, a stable LBM
with non-uniform mesh should be proposed, which will
be involved in our further work.
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